NotEqual / Operator Layer
Compare values for inequality between a column and a constant, or between two columns. Similar to pandas df['A'] != df['B'] or df['A'] != 5, numpy.not_equal(), or R's != operator. Returns a boolean column (true where values differ).
Mathematical form:
Common applications:
- Anomaly detection (value != expected)
- Change detection (current != previous)
- Error checking (status != success)
- Data cleaning (remove unwanted values)
- Filtering outliers
- Exception handling
Note: Consider precision issues when comparing floating-point values.
SelectLeft
columnThe primary column for comparison. Forms the left side of the inequality check (e.g., current value, test measurement, input data).
SelectRight
oneofValue
i6464-bit signed integer for inequality comparison. Range: -2^63 to 2^63-1. Use cases:
- Error detection (code != 0)
- State changes (status != -1)
- Boundary checks (value != limit)
- Flag verification (setting != default)
Value
u6464-bit unsigned integer for inequality comparison. Range: 0 to 2^64-1. Examples:
- Capacity checks (size != maximum)
- Counter validation (retries != limit)
- ID verification (user_id != root_id)
- Resource monitoring (available != 0)
Value
f6464-bit floating-point for inequality comparison. Examples:
- Threshold checking (temperature != 0.0)
- Calibration verification (reading != baseline)
- Signal processing (amplitude != noise_floor)
- Rate monitoring (growth != stagnant)
PropagateNull
boolControls null value handling:
- true: null != null returns false, null != value returns null
- false: null != null returns null, null != value returns null
Default is true for standard SQL-like null comparison behavior
AsColumn
nameName for the new column. If not provided, the system generates a unique name. If AsColumn
matches an existing column, the existing column is replaced. The name should follow valid column naming conventions.