NotEqual / Operator Layer

Compare values for inequality between a column and a constant, or between two columns. Similar to pandas df['A'] != df['B'] or df['A'] != 5, numpy.not_equal(), or R's != operator. Returns a boolean column (true where values differ).

Mathematical form:

Common applications:

  • Anomaly detection (value != expected)
  • Change detection (current != previous)
  • Error checking (status != success)
  • Data cleaning (remove unwanted values)
  • Filtering outliers
  • Exception handling

Note: Consider precision issues when comparing floating-point values.

Table
0
0
Table

The primary column for comparison. Forms the left side of the inequality check (e.g., current value, test measurement, input data).

Integer
0

64-bit signed integer for inequality comparison. Range: -2^63 to 2^63-1. Use cases:

  • Error detection (code != 0)
  • State changes (status != -1)
  • Boundary checks (value != limit)
  • Flag verification (setting != default)
0

64-bit unsigned integer for inequality comparison. Range: 0 to 2^64-1. Examples:

  • Capacity checks (size != maximum)
  • Counter validation (retries != limit)
  • ID verification (user_id != root_id)
  • Resource monitoring (available != 0)
0

64-bit floating-point for inequality comparison. Examples:

  • Threshold checking (temperature != 0.0)
  • Calibration verification (reading != baseline)
  • Signal processing (amplitude != noise_floor)
  • Rate monitoring (growth != stagnant)

Other

column

The second column for inequality comparison. Common pairs:

  • measured != control values
  • new_data != old_data
  • sensor_1 != sensor_2 (redundancy check)
  • actual != predicted (model evaluation)

Controls null value handling:

  • true: null != null returns false, null != value returns null
  • false: null != null returns null, null != value returns null

Default is true for standard SQL-like null comparison behavior

Name for the new column. If not provided, the system generates a unique name. If AsColumn matches an existing column, the existing column is replaced. The name should follow valid column naming conventions.