Log / Computation Layer
Calculate the logarithm with a specified base for each value in a numeric column. Similar to numpy.log(), pandas.eval('log()'), or R's log() function.
Mathematical form: where is the specified base and is the row index.
Common applications:
- Scale compression (reducing data range)
- Information theory (bits of information)
- Sound intensity (decibel calculations)
- pH calculations (hydrogen ion concentration)
- Earthquake magnitude (Richter scale)
- Network analysis (graph distances)
- Psychological scaling (Weber-Fechner law)
Note: Input values must be positive. Negative or zero inputs result in null values.
Table
0
0
Table
Transforms
[, ...]Select
columnThe numeric column to compute logarithms for. Values must be positive (> 0). Common input types:
- Raw measurements (sound power, light intensity)
- Counts or frequencies (occurrence data)
- Ratios or proportions (concentration levels)
- Scale values (energy measurements)
Base
f64The logarithm base (Base
). Common values:
- e ≈ 2.71828 (natural logarithm, default)
- 2 (binary logarithm, for computer science)
- 10 (common logarithm, for engineering)
- Other bases for specific applications
Must be positive and not equal to 1.
AsColumn
nameName for the new column. If not provided, the system generates a unique name. If AsColumn
matches an existing column, the existing column is replaced. The name should follow valid column naming conventions.