NullColumn / New Layer

Create a new column filled with null values of specified type. Similar to pandas.Series(dtype=type) filled with None/null values. Useful for creating placeholder columns, representing missing data, or preparing data structures for future updates.

Table
0
0
Table
Int64

The data type of the null column. Maps to Python/numpy data types (e.g., Int64 is similar to np.int64, Float64 to np.float64).

Int64 ~

64-bit integer null column. Range when filled: -2^63 to 2^63-1. Suitable for large numbers or timestamps.

Int32 ~

32-bit integer null column. Range when filled: -2^31 to 2^31-1. Common for general integer data.

Int16 ~

16-bit integer null column. Range when filled: -32,768 to 32,767. Good for small range integers.

Int8 ~

8-bit integer null column. Range when filled: -128 to 127. Ideal for small numbers or flags.

UInt64 ~

64-bit unsigned integer null column. Range when filled: 0 to 2^64-1. For large positive numbers.

UInt32 ~

32-bit unsigned integer null column. Range when filled: 0 to 4,294,967,295. For moderate positive numbers.

UInt16 ~

16-bit unsigned integer null column. Range when filled: 0 to 65,535. For small positive numbers.

UInt8 ~

8-bit unsigned integer null column. Range when filled: 0 to 255. For byte values or small counts.

Float64 ~

64-bit double-precision floating point null column. Approximately 16 decimal digits precision. For high-precision numeric data.

Float32 ~

32-bit single-precision floating point null column. Approximately 7 decimal digits precision. For general numeric data.

Bool ~

Boolean null column. Can hold null and, when filled: true/false values. For logical flags or binary states.

String ~

UTF-8 encoded string null column. Supports international characters and symbols when filled. For text data of any length.

Name for the new column. If not provided, the system generates a unique name. If AsColumn matches an existing column, the existing column is replaced. The name should follow valid column naming conventions.