NuSvc / Classifier Layer

Nu-Support Vector Classification - Alternative SVM formulation. Similar to SVC but uses a parameter to control the number of support vectors.

Mathematical form: subject to:

where:

  • controls support vector fraction
  • is the margin parameter
  • are slack variables
  • is the kernel mapping

Key characteristics:

  • Direct control over support vectors
  • Bounded parameter range [0,1]
  • Automatic margin optimization
  • Similar to standard SVC

Common applications:

  • Outlier detection
  • Support vector control
  • Margin optimization
  • Novel class detection

Limitations:

  • Feasibility constraints
  • Parameter sensitivity
  • Complex optimization
  • Training instability

Outputs:

  1. Predicted Table: Input data with predictions
  2. Validation Results: Cross-validation metrics
  3. Test Metric: Test set performance
  4. ROC Curve Data: ROC analysis information
  5. Confusion Matrix: Classification breakdown
  6. Feature Importances: Feature coefficients

Note: Requires careful nu parameter selection to avoid infeasibility

Table
0
0
Predicted Table
1
Validation Results
2
Test Metric
3
ROC Curve Data
4
Confusion Matrix
5
Feature Importances

SelectFeatures

[column, ...]

Feature columns for Nu-SVC classification:

Data requirements:

  1. Format specifications:

    • Numerical features only
    • No missing values allowed
    • Finite numbers required
    • Dense or sparse format
  2. Preprocessing essentials:

    • Standardization (recommended):
      • StandardScaler: Mean=0, Var=1
      • Critical for kernel methods
      • Affects gamma scaling
    • Normalization (alternative):
      • MinMaxScaler: Fixed range
      • Useful for bounded kernels
  3. Feature engineering:

    • Kernel-appropriate transforms
    • Polynomial features for linear kernel
    • Domain-specific mappings
    • Dimensionality considerations
  4. Quality checks:

    • Feature relevance
    • Scale compatibility
    • Outlier detection
    • Correlation analysis

Selection behavior:

  • Empty: Uses all numeric columns except target
  • Specified: Only listed columns used
  • Order: Maintains specified sequence

Target column for Nu-SVC classification:

Data requirements:

  1. Label specifications:

    • Categorical values
    • No missing values
    • At least two classes
    • Integer encoding preferred
  2. Class characteristics:

    • Support for multi-class
    • Binary special case
    • Class label encoding:
      • Integers from 0 to n_classes-1
      • Consistent encoding scheme
  3. Distribution considerations:

    • Affects nu parameter feasibility
    • Influences class weights
    • Impacts model performance
    • Consider class balance
  4. Implementation notes:

    • First column in multi-label case
    • Automatic label encoding
    • Supports label transformation
    • Maintains label ordering

Validation requirements:

  • Consistent encoding across splits
  • Stratification recommended
  • Class presence in all folds
  • Representative sampling

Params

oneof
DefaultParams

Optimized default configuration for Nu-SVC:

Default settings:

  1. Core parameters:

    • nu = 0.5 (support vector ratio)
    • RBF kernel (non-linear)
    • gamma = 'scale' (auto-scaling)
  2. Kernel settings:

    • degree = 3 (polynomial)
    • coef0 = 0.0 (kernel offset)
  3. Training control:

    • shrinking = true
    • tolerance = 0.001
    • cache_size = 200MB

Best suited for:

  • Initial exploration
  • Medium-sized datasets
  • Unknown distributions
  • Standard problems

Note: May require nu adjustment for feasibility

Fine-tuned configuration for Nu-SVC:

Parameter categories:

  1. Model control:

    • Nu parameter
    • Kernel selection
    • Feature mapping
  2. Optimization:

    • Convergence criteria
    • Training limits
    • Memory usage
  3. Output control:

    • Decision function
    • Probability estimation
    • Class weighting

Note: Parameter feasibility crucial for Nu-SVC

Nu

f64
0.5

An upper bound on the fraction of margin errors and a lower bound of the fraction of support vectors.

Properties:

  • Controls support vector fraction
  • Bounds training errors
  • Range: (0, 1]

Interpretation:

  • Upper bound on training errors
  • Lower bound on support vectors
  • Automatic margin control

Selection guide:

  • Small (0.1-0.3): Fewer SVs, strict
  • Medium (0.3-0.7): Balanced
  • Large (0.7-1.0): More SVs, flexible

Note: Must satisfy feasibility conditions

Kernel

enum
Rbf

Kernel functions for feature space mapping:

Purpose:

  • Non-linear transformation
  • Implicit feature mapping
  • Similarity computation
  • Pattern recognition

Selection impact:

  • Model complexity
  • Training speed
  • Memory usage
  • Prediction accuracy
Linear ~

Linear kernel:

Properties:

  • Simplest kernel
  • No hyperparameters
  • Fast computation
  • Linear boundaries

Best for:

  • High-dimensional data
  • Large datasets
  • Linear problems
  • Text classification
Poly ~

Polynomial kernel:

Properties:

  • Feature interactions
  • Degree control
  • Bounded values
  • Variable complexity

Parameters:

  • degree (d)
  • gamma (γ)
  • coef0 (r)

Best for:

  • Structured data
  • Image processing
  • Feature combinations
Rbf ~

Radial Basis Function:

Properties:

  • Universal approximator
  • Infinite dimensions
  • Local influence
  • Smooth boundaries

Parameter:

  • gamma (γ): Influence radius

Best for:

  • General purpose
  • Unknown relationships
  • Non-linear patterns
  • Default choice
Sigmoid ~

Sigmoid kernel:

Properties:

  • Neural network relation
  • Bounded output
  • Non-positive definite
  • S-shaped function

Parameters:

  • gamma (γ)
  • coef0 (r)

Best for:

  • Neural network alternative
  • Specific applications
  • Historical comparison
3

Polynomial kernel degree:

Effect:

Common values:

  • 2: Quadratic patterns
  • 3: Default complexity
  • 4+: Higher-order patterns

Impact:

  • Feature space dimension
  • Model complexity
  • Training time
  • Memory usage

Note: Only for polynomial kernel

Gamma

enum
Scale

Kernel coefficient computation strategies:

Role:

  • Controls kernel shape
  • Defines feature similarity
  • Affects model complexity
  • Influences decision boundaries

Impact:

  • Large γ: More complex boundaries
  • Small γ: Smoother boundaries
  • Critical for RBF, Poly, Sigmoid
  • Key hyperparameter
Scale ~

Adaptive scaling:

Properties:

  • Data-dependent scaling
  • Variance-aware
  • Automatic adaptation
  • Robust behavior

Advantages:

  • Scale invariant
  • Default choice
  • Robust performance
  • Modern approach

Best for:

  • General usage
  • Unknown scales
  • Varied features
Auto ~

Feature-based scaling:

Properties:

  • Dimension-based
  • Simple scaling
  • Legacy approach
  • Scale sensitive

Advantages:

  • Simple computation
  • Predictable behavior
  • Historical compatibility

Best for:

  • Normalized features
  • Legacy code
  • Simple problems
Custom ~

Manual gamma specification:

Usage:

  • Expert-defined value
  • Fine-tuning control
  • Optimization target
  • Research purposes

Advantages:

  • Full control
  • Precise tuning
  • Experimental freedom

Best for:

  • Grid search
  • Expert users
  • Research needs
0

Custom gamma value:

Usage:

  • RBF: Influence radius
  • Polynomial: Scale factor
  • Sigmoid: Scale parameter

Typical ranges:

  • Small: 0.001 - 0.01
  • Medium: 0.01 - 0.1
  • Large: 0.1 - 1.0

Note: Only used when gamma='custom'

0

Independent kernel term:

Usage in kernels: Polynomial: Sigmoid:

Typical ranges:

  • Conservative: [-1.0, 1.0]
  • Extended: [-5.0, 5.0]

Impact:

  • Kernel output shift
  • Decision boundary shape
  • Model flexibility

Note: Only affects polynomial and sigmoid kernels

true

Whether to use the shrinking heuristic.

Purpose:

  • Speeds up training
  • Reduces memory usage
  • Removes bounded variables
  • Optimizes solution search

Benefits:

  • Faster convergence
  • Memory efficiency
  • Reduced complexity

Trade-offs:

  • Speed vs precision
  • Memory vs accuracy
false

Whether to enable probability estimates.

Implementation:

  • Uses Platt scaling
  • Internal cross-validation
  • Fits sigmoid to scores

Impact:

  • Slower training (5-10x)
  • Additional memory needs
  • Probabilistic outputs
  • Calibrated predictions

Use when:

  • Confidence needed
  • Risk assessment
  • Decision thresholds
  • Probability requirements

Tol

f64
0.001

Optimization tolerance threshold:

Purpose:

  • Controls convergence
  • Affects solution precision
  • Balances computation

Typical values:

  • Strict: 1e-4 to 1e-3
  • Standard: 1e-3
  • Relaxed: 1e-3 to 1e-2

Trade-off:

  • Precision vs speed
  • Accuracy vs time
200

Kernel cache memory (MB):

Purpose:

  • Stores kernel evaluations
  • Speeds up training
  • Reduces computations

Sizing guide:

  • Small: 50-100MB
  • Medium: 200-500MB
  • Large: 1000MB+

Consider:

  • Available RAM
  • Dataset size
  • Training speed needs
None

Class importance weighting schemes:

Purpose:

  • Handles imbalanced data
  • Adjusts class influence
  • Controls error costs
  • Modifies optimization

Effect:

  • Changes margin importance
  • Adjusts support vectors
  • Influences boundaries
  • Modifies ν interpretation
None ~

Uniform class weighting:

Properties:

  • Equal class importance
  • Natural distribution
  • Unmodified optimization
  • Standard behavior

Best for:

  • Balanced datasets
  • Equal error costs
  • Default choice
  • Simple problems
Balanced ~

Inverse frequency weighting:

Formula:

Properties:

  • Automatic adjustment
  • Class-size compensation
  • Balanced errors
  • Fair classification

Best for:

  • Imbalanced data
  • Minority class focus
  • Uneven distributions
  • Fair evaluation
-1

Maximum iteration limit:

Values:

  • -1: No limit
  • >0: Maximum iterations

Guidelines:

  • Simple: 1000-10000
  • Complex: 10000-100000
  • Very complex: >100000

Purpose:

  • Prevents infinite loops
  • Resource control
  • Time management

Multi-class decision function configuration:

Purpose:

  • Multi-class handling
  • Decision boundary type
  • Prediction structure
  • Output format

Impact:

  • Memory usage
  • Computation speed
  • Model interpretability
  • Prediction format
Ovr ~

One-vs-Rest strategy:

Properties:

  • n_classes binary classifiers
  • Standard output format
  • Memory efficient
  • Common interface

Advantages:

  • Simple interpretation
  • Fast predictions
  • Memory efficient
  • Compatible output

Best for:

  • Large-scale problems
  • Many classes
  • Production systems
Ovo ~

One-vs-One strategy:

Properties:

  • n_classes*(n_classes-1)/2 classifiers
  • Pairwise comparisons
  • Original LIBSVM format
  • Detailed boundaries

Advantages:

  • Better separation
  • More precise
  • Traditional approach
  • Balanced decisions

Best for:

  • Few classes
  • Complex boundaries
  • Detailed analysis

Controls the pseudo random number generation for shuffling the data for probability estimates. Ignored when 'probability' is False.

Controls:

  • Data shuffling
  • Probability estimation
  • Cross-validation splits

Importance:

  • Reproducibility
  • Debugging
  • Result validation
  • Consistent behavior

Hyperparameter optimization for Nu-SVC:

Search process:

  1. Core parameters:

    • Nu values
    • Kernel selection
    • Kernel parameters
  2. Training control:

    • Optimization settings
    • Convergence criteria
    • Resource limits
  3. Model features:

    • Class weights
    • Decision functions
    • Output options

Computational impact:

  • Time: O(n_params * n_samples²)
  • Memory: O(n_params * cache_size)
  • Storage: O(n_params * n_support_vectors)

Nu

[f64, ...]
0.5

Nu parameter search space:

Search strategies:

  1. Conservative range:

    • [0.1, 0.3, 0.5]
    • [0.2, 0.4, 0.6]
  2. Wide range:

    • [0.1, 0.3, 0.5, 0.7, 0.9]
    • [0.05, 0.1, 0.25, 0.5]

Considerations:

  • Class distribution
  • Feasibility constraints
  • Support vector goals
  • Error tolerance

Note: Values must satisfy feasibility conditions

Kernel

[enum, ...]
Rbf

Kernel functions for feature space mapping:

Purpose:

  • Non-linear transformation
  • Implicit feature mapping
  • Similarity computation
  • Pattern recognition

Selection impact:

  • Model complexity
  • Training speed
  • Memory usage
  • Prediction accuracy
Linear ~

Linear kernel:

Properties:

  • Simplest kernel
  • No hyperparameters
  • Fast computation
  • Linear boundaries

Best for:

  • High-dimensional data
  • Large datasets
  • Linear problems
  • Text classification
Poly ~

Polynomial kernel:

Properties:

  • Feature interactions
  • Degree control
  • Bounded values
  • Variable complexity

Parameters:

  • degree (d)
  • gamma (γ)
  • coef0 (r)

Best for:

  • Structured data
  • Image processing
  • Feature combinations
Rbf ~

Radial Basis Function:

Properties:

  • Universal approximator
  • Infinite dimensions
  • Local influence
  • Smooth boundaries

Parameter:

  • gamma (γ): Influence radius

Best for:

  • General purpose
  • Unknown relationships
  • Non-linear patterns
  • Default choice
Sigmoid ~

Sigmoid kernel:

Properties:

  • Neural network relation
  • Bounded output
  • Non-positive definite
  • S-shaped function

Parameters:

  • gamma (γ)
  • coef0 (r)

Best for:

  • Neural network alternative
  • Specific applications
  • Historical comparison

Degree

[u32, ...]
3

Polynomial degrees to evaluate:

Common ranges:

  1. Standard search:

    • [2, 3, 4]: Basic polynomials
    • [2, 3, 4, 5]: Extended range
  2. Specific needs:

    • [1, 2]: Linear to quadratic
    • [2, 3, 4, 5, 6]: Complex patterns

Consider:

  • Computational cost
  • Memory requirements
  • Overfitting risk

Gamma

[enum, ...]
Scale

Kernel coefficient computation strategies:

Role:

  • Controls kernel shape
  • Defines feature similarity
  • Affects model complexity
  • Influences decision boundaries

Impact:

  • Large γ: More complex boundaries
  • Small γ: Smoother boundaries
  • Critical for RBF, Poly, Sigmoid
  • Key hyperparameter
Scale ~

Adaptive scaling:

Properties:

  • Data-dependent scaling
  • Variance-aware
  • Automatic adaptation
  • Robust behavior

Advantages:

  • Scale invariant
  • Default choice
  • Robust performance
  • Modern approach

Best for:

  • General usage
  • Unknown scales
  • Varied features
Auto ~

Feature-based scaling:

Properties:

  • Dimension-based
  • Simple scaling
  • Legacy approach
  • Scale sensitive

Advantages:

  • Simple computation
  • Predictable behavior
  • Historical compatibility

Best for:

  • Normalized features
  • Legacy code
  • Simple problems
Custom ~

Manual gamma specification:

Usage:

  • Expert-defined value
  • Fine-tuning control
  • Optimization target
  • Research purposes

Advantages:

  • Full control
  • Precise tuning
  • Experimental freedom

Best for:

  • Grid search
  • Expert users
  • Research needs

GammaF

[f64, ...]
0

Custom gamma values to evaluate:

Search spaces:

  1. Log scale (recommended):

    • [0.0001, 0.001, 0.01, 0.1, 1.0]
    • [0.001, 0.003, 0.01, 0.03, 0.1]
  2. Problem-specific:

    • [0.001, 0.01]: Smoother boundaries
    • [0.1, 1.0, 10.0]: Complex boundaries

Note: Only used with gamma='custom'

Coef0

[f64, ...]
0

Independent term in kernel functions:

Search ranges for poly/sigmoid kernels:

  1. Conservative:

    • [-1.0, 0.0, 1.0]: Standard range
  2. Exploratory:

    • [-5.0, -1.0, 0.0, 1.0, 5.0]: Wide search
    • [-2.0, -1.0, 0.0, 1.0, 2.0]: Medium range

Kernel-specific effects:

  • Polynomial: Controls homogeneity
  • Sigmoid: Shifts decision boundary
  • Other kernels: No effect

Selection strategy:

  • Start with 0.0 for baseline
  • Adjust based on kernel type
  • Consider data scale

Shrinking

[bool, ...]
true

Shrinking heuristic optimization:

Search combinations:

  1. Single option evaluation:

    • [true]: Enable shrinking heuristic
    • [false]: Disable optimization
  2. Comparative analysis:

    • [true, false]: Full comparison

Performance impact:

  • Reduces active set size
  • Accelerates convergence
  • Optimizes memory usage
  • May affect final precision

Usage considerations:

  • Enable for large datasets
  • Disable for maximum precision
  • Test both for optimal balance
false

Probability estimation configuration:

Implementation details:

  • Uses internal cross-validation
  • Must be enabled before fitting
  • Significantly impacts training time
  • Adds memory overhead

Performance implications:

  • Training: 5-10x slower
  • Memory: Additional storage for probabilities
  • Computation: Extra cross-validation step

Use cases:

  • Confidence scoring needs
  • Risk assessment requirements
  • Threshold optimization
  • Probability calibration

Tol

[f64, ...]
0.001

Optimization stopping tolerance:

Search spaces:

  1. Precision-focused:

    • [1e-5, 1e-4]: High precision needs
    • [1e-4, 5e-4]: Strict convergence
  2. Speed-focused:

    • [1e-3, 1e-2]: Faster convergence
    • [5e-3, 1e-2]: Quick approximation

Convergence criteria:

  • Monitors dual gap
  • Affects iteration count
  • Controls solution precision
  • Balances time vs accuracy

Selection strategy:

  • Smaller: Better precision, slower
  • Larger: Faster, approximate
  • Default (1e-3): Good balance
200

Kernel cache memory allocation (MB):

Guidelines:

  • Small (100MB): Limited memory
  • Medium (200MB): Default
  • Large (1000MB+): Fast training

Impact:

  • Training speed
  • Memory usage
  • Resource utilization

ClassWeight

[enum, ...]
None

Class importance weighting schemes:

Purpose:

  • Handles imbalanced data
  • Adjusts class influence
  • Controls error costs
  • Modifies optimization

Effect:

  • Changes margin importance
  • Adjusts support vectors
  • Influences boundaries
  • Modifies ν interpretation
None ~

Uniform class weighting:

Properties:

  • Equal class importance
  • Natural distribution
  • Unmodified optimization
  • Standard behavior

Best for:

  • Balanced datasets
  • Equal error costs
  • Default choice
  • Simple problems
Balanced ~

Inverse frequency weighting:

Formula:

Properties:

  • Automatic adjustment
  • Class-size compensation
  • Balanced errors
  • Fair classification

Best for:

  • Imbalanced data
  • Minority class focus
  • Uneven distributions
  • Fair evaluation

MaxIter

[i64, ...]
-1

Maximum solver iterations:

Value interpretation:

  • -1: No iteration limit
  • >0: Hard iteration ceiling

Search ranges:

  1. Standard problems:

    • [1000, 2000, 5000]: Basic range
    • [-1, 1000, 5000]: Include unlimited
  2. Complex problems:

    • [5000, 10000, 50000]: Extended range
    • [10000, 50000, -1]: High iterations

Selection factors:

  • Dataset complexity
  • Convergence patterns
  • Time constraints
  • Solution quality needs

Multi-class decision function configuration:

Purpose:

  • Multi-class handling
  • Decision boundary type
  • Prediction structure
  • Output format

Impact:

  • Memory usage
  • Computation speed
  • Model interpretability
  • Prediction format
Ovr ~

One-vs-Rest strategy:

Properties:

  • n_classes binary classifiers
  • Standard output format
  • Memory efficient
  • Common interface

Advantages:

  • Simple interpretation
  • Fast predictions
  • Memory efficient
  • Compatible output

Best for:

  • Large-scale problems
  • Many classes
  • Production systems
Ovo ~

One-vs-One strategy:

Properties:

  • n_classes*(n_classes-1)/2 classifiers
  • Pairwise comparisons
  • Original LIBSVM format
  • Detailed boundaries

Advantages:

  • Better separation
  • More precise
  • Traditional approach
  • Balanced decisions

Best for:

  • Few classes
  • Complex boundaries
  • Detailed analysis

Random number generator control:

Affects randomization in:

  1. Training process:

    • Data shuffling sequences
    • Probability estimation
    • Cross-validation splits
  2. Implementation details:

    • Active when probability=True
    • Ignored when probability=False
    • Controls internal CV

Usage importance:

  • Reproducible results
  • Consistent validation
  • Debugging support
  • Performance comparison
Accuracy

Performance evaluation metrics:

Purpose:

  • Model selection
  • Performance evaluation
  • Cross-validation scoring
  • Parameter optimization

Selection criteria:

  • Problem objectives
  • Class distribution
  • Error sensitivity
  • Application needs
Default ~

Built-in accuracy scoring:

Properties:

  • Standard accuracy metric
  • Equal error weighting
  • Fast computation
  • Model's native score

Best for:

  • Initial evaluation
  • Balanced datasets
  • Quick assessment
  • Standard problems
Accuracy ~

Standard classification accuracy:

Formula:

Properties:

  • Range: [0, 1]
  • Intuitive metric
  • Standard benchmark
  • Equal weighting

Best for:

  • Balanced classes
  • Equal error costs
  • General evaluation
BalancedAccuracy ~

Class-normalized accuracy:

Formula:

Properties:

  • Range: [0, 1]
  • Class-independent
  • Balanced evaluation
  • Fair metric

Best for:

  • Imbalanced datasets
  • Varying class sizes
  • Fair comparison

Split

oneof
DefaultSplit

Standard train-test split configuration optimized for general classification tasks.

Configuration:

  • Test size: 20% (0.2)
  • Random seed: 98
  • Shuffling: Enabled
  • Stratification: Based on target distribution

Advantages:

  • Preserves class distribution
  • Provides reliable validation
  • Suitable for most datasets

Best for:

  • Medium to large datasets
  • Independent observations
  • Initial model evaluation

Splitting uses the ShuffleSplit strategy or StratifiedShuffleSplit strategy depending on the field stratified. Note: If shuffle is false then stratified must be false.

Configurable train-test split parameters for specialized requirements. Allows fine-tuning of data division strategy for specific use cases or constraints.

Use cases:

  • Time series data
  • Grouped observations
  • Specific train/test ratios
  • Custom validation schemes

Random seed for reproducible splits. Ensures:

  • Consistent train/test sets
  • Reproducible experiments
  • Comparable model evaluations

Same seed guarantees identical splits across runs.

true

Data shuffling before splitting. Effects:

  • true: Randomizes order, better for i.i.d. data
  • false: Maintains order, important for time series

When to disable:

  • Time dependent data
  • Sequential patterns
  • Grouped observations
0.8

Proportion of data for training. Considerations:

  • Larger (e.g., 0.8-0.9): Better model learning
  • Smaller (e.g., 0.5-0.7): Better validation

Common splits:

  • 0.8: Standard (80/20 split)
  • 0.7: More validation emphasis
  • 0.9: More training emphasis
false

Maintain class distribution in splits. Important when:

  • Classes are imbalanced
  • Small classes present
  • Representative splits needed

Requirements:

  • Classification tasks only
  • Cannot use with shuffle=false
  • Sufficient samples per class

Cv

oneof
DefaultCv

Standard cross-validation configuration using stratified 3-fold splitting.

Configuration:

  • Folds: 3
  • Method: StratifiedKFold
  • Stratification: Preserves class proportions

Advantages:

  • Balanced evaluation
  • Reasonable computation time
  • Good for medium-sized datasets

Limitations:

  • May be insufficient for small datasets
  • Higher variance than larger fold counts
  • May miss some data patterns

Configurable stratified k-fold cross-validation for specific validation requirements.

Features:

  • Adjustable fold count with NFolds determining the number of splits.
  • Stratified sampling
  • Preserved class distributions

Use cases:

  • Small datasets (more folds)
  • Large datasets (fewer folds)
  • Detailed model evaluation
  • Robust performance estimation
3

Number of cross-validation folds. Guidelines:

  • 3-5: Large datasets, faster training
  • 5-10: Standard choice, good balance
  • 10+: Small datasets, thorough evaluation

Trade-offs:

  • More folds: Better evaluation, slower training
  • Fewer folds: Faster training, higher variance

Must be at least 2.

K-fold cross-validation without stratification. Divides data into k consecutive folds for iterative validation.

Process:

  • Splits data into k equal parts
  • Each fold serves as validation once
  • Remaining k-1 folds form training set

Use cases:

  • Regression problems
  • Large, balanced datasets
  • When stratification unnecessary
  • Continuous target variables

Limitations:

  • May not preserve class distributions
  • Less suitable for imbalanced data
  • Can create biased splits with ordered data

Number of folds for cross-validation. Selection guide: Recommended values:

  • 5: Standard choice (default)
  • 3: Large datasets/quick evaluation
  • 10: Thorough evaluation/smaller datasets

Trade-offs:

  • Higher values: More thorough, computationally expensive
  • Lower values: Faster, potentially higher variance

Must be at least 2 for valid cross-validation.

Random seed for fold generation when shuffling. Important for:

  • Reproducible results
  • Consistent fold assignments
  • Benchmark comparisons
  • Debugging and validation

Set specific value for reproducibility across runs.

true

Whether to shuffle data before splitting into folds. Effects:

  • true: Randomized fold composition (recommended)
  • false: Sequential splitting

Enable when:

  • Data may have ordering
  • Better fold independence needed

Disable for:

  • Time series data
  • Ordered observations

Stratified K-fold cross-validation maintaining class proportions across folds.

Key features:

  • Preserves class distribution in each fold
  • Handles imbalanced datasets
  • Ensures representative splits

Best for:

  • Classification problems
  • Imbalanced class distributions
  • When class proportions matter

Requirements:

  • Classification tasks only
  • Sufficient samples per class
  • Categorical target variable

Number of stratified folds. Guidelines: Typical values:

  • 5: Standard for most cases
  • 3: Quick evaluation/large datasets
  • 10: Detailed evaluation/smaller datasets

Considerations:

  • Must allow sufficient samples per class per fold
  • Balance between stability and computation time
  • Consider smallest class size when choosing

Seed for reproducible stratified splits. Ensures:

  • Consistent fold assignments
  • Reproducible results
  • Comparable experiments
  • Systematic validation

Fixed seed guarantees identical stratified splits.

false

Data shuffling before stratified splitting. Impact:

  • true: Randomizes while maintaining stratification
  • false: Maintains data order within strata

Use cases:

  • true: Independent observations
  • false: Grouped or sequential data

Class proportions maintained regardless of setting.

Random permutation cross-validator with independent sampling.

Characteristics:

  • Random sampling for each split
  • Independent train/test sets
  • More flexible than K-fold
  • Can have overlapping test sets

Advantages:

  • Control over test size
  • Fresh splits each iteration
  • Good for large datasets

Limitations:

  • Some samples might never be tested
  • Others might be tested multiple times
  • No guarantee of complete coverage

Number of random splits to perform. Consider: Common values:

  • 5: Standard evaluation
  • 10: More thorough assessment
  • 3: Quick estimates

Trade-offs:

  • More splits: Better estimation, longer runtime
  • Fewer splits: Faster, less stable estimates

Balance between computation and stability.

Random seed for reproducible shuffling. Controls:

  • Split randomization
  • Sample selection
  • Result reproducibility

Important for:

  • Debugging
  • Comparative studies
  • Result verification
0.2

Proportion of samples for test set. Guidelines: Common ratios:

  • 0.2: Standard (80/20 split)
  • 0.25: More validation emphasis
  • 0.1: More training data

Considerations:

  • Dataset size
  • Model complexity
  • Validation requirements

It must be between 0.0 and 1.0.

Stratified random permutation cross-validator combining shuffle-split with stratification.

Features:

  • Maintains class proportions
  • Random sampling within strata
  • Independent splits
  • Flexible test size

Ideal for:

  • Imbalanced datasets
  • Large-scale problems
  • When class distributions matter
  • Flexible validation schemes

Number of stratified random splits. Guidelines: Recommended values:

  • 5: Standard evaluation
  • 10: Detailed analysis
  • 3: Quick assessment

Consider:

  • Sample size per class
  • Computational resources
  • Stability requirements

Seed for reproducible stratified sampling. Ensures:

  • Consistent class proportions
  • Reproducible splits
  • Comparable experiments

Critical for:

  • Benchmarking
  • Research studies
  • Quality assurance
0.2

Fraction of samples for stratified test set. Best practices: Common splits:

  • 0.2: Balanced evaluation
  • 0.3: More thorough testing
  • 0.15: Preserve training size

Consider:

  • Minority class size
  • Overall dataset size
  • Validation objectives

It must be between 0.0 and 1.0.

Time Series cross-validator. Provides train/test indices to split time series data samples that are observed at fixed time intervals, in train/test sets. It is a variation of k-fold which returns first k folds as train set and the k + 1th fold as test set. Note that unlike standard cross-validation methods, successive training sets are supersets of those that come before them. Also, it adds all surplus data to the first training partition, which is always used to train the model. Key features:

  • Maintains temporal dependence
  • Expanding window approach
  • Forward-chaining splits
  • No future data leakage

Use cases:

  • Sequential data
  • Financial forecasting
  • Temporal predictions
  • Time-dependent patterns

Note: Training sets are supersets of previous iterations.

Number of temporal splits. Considerations: Typical values:

  • 5: Standard forward chaining
  • 3: Limited historical data
  • 10: Long time series

Impact:

  • Affects training window growth
  • Determines validation points
  • Influences computational load

Maximum size of training set. Should be strictly less than the number of samples. Applications:

  • 0: Use all available past data
  • >0: Rolling window of fixed size

Use cases:

  • Limit historical relevance
  • Control computational cost
  • Handle concept drift
  • Memory constraints

Number of samples in each test set. When 0:

  • Auto-calculated as n_samples/(n_splits+1)
  • Ensures equal-sized test sets

Considerations:

  • Forecast horizon
  • Validation requirements
  • Available future data

Gap

u64
0

Number of samples to exclude from the end of each train set before the test set.Gap between train and test sets. Uses:

  • Avoid data leakage
  • Model forecast lag
  • Buffer periods

Common scenarios:

  • 0: Continuous prediction
  • >0: Forward gap for realistic evaluation
  • Match business forecasting needs