IsDuplicatedMask / Boolean Layer

Create boolean mask columns identifying duplicate values in specified columns. Similar to pandas duplicated(keep=False) or dplyr's duplicated(). Returns True for ALL occurrences of values that appear more than once.

Common applications:

  • Detecting duplicate records
  • Finding repeated transactions
  • Identifying redundant entries
  • Data cleaning
  • Quality control checks

Example:

IndexValueIs Duplicated
0appletrue
1bananatrue
2appletrue
3orangefalse
4bananatrue
Table
0
0
Table

Mask

[, ...]

List of duplicate checking operations to perform. Each mask creates a new boolean column. Common scenarios:

  • Finding all duplicate customer records
  • Identifying all repeated transactions
  • Detecting all redundant measurements
  • Marking all duplicate entries

At least one mask must be specified.

Select

column

The column to check for duplicates. Works with any data type. The mask will be a boolean column where:

  • True indicates a value that appears multiple times (ALL occurrences)
  • False indicates values that appear exactly once

Useful for finding ALL rows involved in data redundancy.

Name for the new column. If not provided, the system generates a unique name. If AsColumn matches an existing column, the existing column is replaced. The name should follow valid column naming conventions.