IsNotNanMask / Boolean Layer
Create boolean mask columns identifying non-NaN (valid number) values in numeric columns. Similar to numpy ~isnan() or R's !is.nan(). Identifies all valid numeric values, including infinities.
Common applications:
- Valid numerical data filtering
- Mathematical operation preprocessing
- Statistical analysis preparation
- Scientific data validation
- Numerical quality assurance
Example:
Index | Float Column | Not NaN Mask |
---|---|---|
0 | 1.5 | true |
1 | NaN | false |
2 | -3.2 | true |
3 | NaN | false |
4 | Inf | true |
Mask
[, ...]List of non-NaN checking operations to perform. Each mask creates a new boolean column. Common scenarios:
- Preparing data for numerical analysis
- Filtering valid floating-point values
- Identifying usable numerical records
- Quality control in scientific computing
At least one mask must be specified.
Select
columnThe column to check for non-NaN values. Applicable to floating-point columns. The mask will be a boolean column where:
- True indicates any valid number (including infinities)
- False indicates NaN value
Useful for filtering valid numerical data for further processing or analysis.
AsColumn
nameName for the new column. If not provided, the system generates a unique name. If AsColumn
matches an existing column, the existing column is replaced. The name should follow valid column naming conventions.