IsNotNanMask / Boolean Layer

Create boolean mask columns identifying non-NaN (valid number) values in numeric columns. Similar to numpy ~isnan() or R's !is.nan(). Identifies all valid numeric values, including infinities.

Common applications:

  • Valid numerical data filtering
  • Mathematical operation preprocessing
  • Statistical analysis preparation
  • Scientific data validation
  • Numerical quality assurance

Example:

IndexFloat ColumnNot NaN Mask
01.5true
1NaNfalse
2-3.2true
3NaNfalse
4Inftrue
Table
0
0
Table

Mask

[, ...]

List of non-NaN checking operations to perform. Each mask creates a new boolean column. Common scenarios:

  • Preparing data for numerical analysis
  • Filtering valid floating-point values
  • Identifying usable numerical records
  • Quality control in scientific computing

At least one mask must be specified.

Select

column

The column to check for non-NaN values. Applicable to floating-point columns. The mask will be a boolean column where:

  • True indicates any valid number (including infinities)
  • False indicates NaN value

Useful for filtering valid numerical data for further processing or analysis.

Name for the new column. If not provided, the system generates a unique name. If AsColumn matches an existing column, the existing column is replaced. The name should follow valid column naming conventions.