Equal / Operator Layer

Compare values for exact equality between a column and a constant, or between two columns. Similar to pandas df['A'] == df['B'] or df['A'] == 5, numpy.equal(), or R's == operator. Returns a boolean column (true where values match exactly).

Mathematical form:

Common applications:

  • Data validation (matching expected values)
  • Status checks (state == 'active')
  • Category filtering (type == target_type)
  • Quality control (reading == reference)
  • Flag creation (value == threshold)
  • Binary feature generation

Note: Use with caution for floating-point comparisons due to precision issues.

Table
0
0
Table

The primary column for comparison. Forms the left side of the equality check (e.g., measured value, current reading, input data).

Integer
0

64-bit signed integer for comparison. Range: -2^63 to 2^63-1. Use cases:

  • Status codes (error == -1)
  • Count validation (items == 100)
  • Version checks (major_version == 2)
  • Binary flags (state == 1)
0

64-bit unsigned integer for comparison. Range: 0 to 2^64-1. Examples:

  • Size checks (length == 256)
  • Port validation (port == 8080)
  • Positive counters (attempts == 3)
  • Hash matching (hash == expected)
0

64-bit floating-point for comparison. Examples:

  • Price points (price == 9.99)
  • Standard values (ph == 7.0)
  • Reference levels (voltage == 5.0)
  • Exact ratios (ratio == 1.0)

Other

column

The second column for equality comparison. Common pairs:

  • actual == expected values
  • password == confirmation
  • primary == backup readings
  • current == previous state
false

Controls null value handling:

  • true: null == null returns true, null == value returns null
  • false: null == null returns null, null == value returns null

Choose based on your null equality semantics requirements

Name for the new column. If not provided, the system generates a unique name. If AsColumn matches an existing column, the existing column is replaced. The name should follow valid column naming conventions.