Equal / Operator Layer
Compare values for exact equality between a column and a constant, or between two columns. Similar to pandas df['A'] == df['B'] or df['A'] == 5, numpy.equal(), or R's == operator. Returns a boolean column (true where values match exactly).
Mathematical form:
Common applications:
- Data validation (matching expected values)
- Status checks (state == 'active')
- Category filtering (type == target_type)
- Quality control (reading == reference)
- Flag creation (value == threshold)
- Binary feature generation
Note: Use with caution for floating-point comparisons due to precision issues.
SelectLeft
columnThe primary column for comparison. Forms the left side of the equality check (e.g., measured value, current reading, input data).
SelectRight
oneofValue
i6464-bit signed integer for comparison. Range: -2^63 to 2^63-1. Use cases:
- Status codes (error == -1)
- Count validation (items == 100)
- Version checks (major_version == 2)
- Binary flags (state == 1)
Value
u6464-bit unsigned integer for comparison. Range: 0 to 2^64-1. Examples:
- Size checks (length == 256)
- Port validation (port == 8080)
- Positive counters (attempts == 3)
- Hash matching (hash == expected)
Value
f6464-bit floating-point for comparison. Examples:
- Price points (price == 9.99)
- Standard values (ph == 7.0)
- Reference levels (voltage == 5.0)
- Exact ratios (ratio == 1.0)
PropagateNull
boolControls null value handling:
- true: null == null returns true, null == value returns null
- false: null == null returns null, null == value returns null
Choose based on your null equality semantics requirements
AsColumn
nameName for the new column. If not provided, the system generates a unique name. If AsColumn
matches an existing column, the existing column is replaced. The name should follow valid column naming conventions.