DropColumns / Manipulation Layer
Remove specified columns from the DataFrame. Similar to pandas' drop() or R's select(-columns).
Common applications:
- Feature selection (removing irrelevant variables)
- Data cleaning (eliminating redundant columns)
- Dimensionality reduction (focusing on key attributes)
- Privacy compliance (removing sensitive information)
- Storage optimization (eliminating unused data)
- Analysis preparation (removing non-analytical fields)
- Model input preparation (dropping non-predictive features)
- Data standardization (removing temporary columns)
Example: Remove intermediate calculation columns or temporary fields after they serve their purpose.
Table
0
0
Table
Select
[column, ...]Columns to remove from the DataFrame. Common scenarios:
- Temporary calculation columns
- Deprecated or outdated fields
- Duplicate information
- Preprocessing artifacts
- Non-relevant attributes
- Intermediate results
- System-generated fields
- Redundant identifiers