DropColumns / Manipulation Layer

Remove specified columns from the DataFrame. Similar to pandas' drop() or R's select(-columns).

Common applications:

  • Feature selection (removing irrelevant variables)
  • Data cleaning (eliminating redundant columns)
  • Dimensionality reduction (focusing on key attributes)
  • Privacy compliance (removing sensitive information)
  • Storage optimization (eliminating unused data)
  • Analysis preparation (removing non-analytical fields)
  • Model input preparation (dropping non-predictive features)
  • Data standardization (removing temporary columns)

Example: Remove intermediate calculation columns or temporary fields after they serve their purpose.

Table
0
0
Table

Select

[column, ...]

Columns to remove from the DataFrame. Common scenarios:

  • Temporary calculation columns
  • Deprecated or outdated fields
  • Duplicate information
  • Preprocessing artifacts
  • Non-relevant attributes
  • Intermediate results
  • System-generated fields
  • Redundant identifiers