NotEqualToColumn / Boolean Layer

Create boolean mask columns by comparing values between two columns element-wise for inequality. Similar to pandas df['A'] != df['B'] or R's not equal operator. Returns True where corresponding values differ.

Common applications:

  • Discrepancy detection
  • Change monitoring
  • Error identification
  • Anomaly detection
  • Update verification

Example:

IndexColumn AColumn BNot Equal
0appleapplefalse
14242false
2nullapplenull
3orangeORANGEtrue
442.042false
Table
0
0
Table

Compare

[, ...]

List of column inequality comparisons to perform. Each creates a new boolean column. Common scenarios:

  • Data change detection
  • Inconsistency checking
  • Error identification
  • Update verification

At least one comparison must be specified.

The first column for comparison. Must be comparable with SelectRight. If this column contains null values, the result will be null for those rows.

The second column for comparison. Must be comparable with SelectLeft. If this column contains null values, the result will be null for those rows. Common pairs:

  • current vs. previous values
  • actual vs. expected results
  • primary vs. backup data

Type conversion may occur for compatible types (e.g., int vs. float).

Name for the new column. If not provided, the system generates a unique name. If AsColumn matches an existing column, the existing column is replaced. The name should follow valid column naming conventions.