NotEqualToColumn / Boolean Layer
Create boolean mask columns by comparing values between two columns element-wise for inequality. Similar to pandas df['A'] != df['B'] or R's not equal operator. Returns True where corresponding values differ.
Common applications:
- Discrepancy detection
- Change monitoring
- Error identification
- Anomaly detection
- Update verification
Example:
Index | Column A | Column B | Not Equal |
---|---|---|---|
0 | apple | apple | false |
1 | 42 | 42 | false |
2 | null | apple | null |
3 | orange | ORANGE | true |
4 | 42.0 | 42 | false |
Compare
[, ...]List of column inequality comparisons to perform. Each creates a new boolean column. Common scenarios:
- Data change detection
- Inconsistency checking
- Error identification
- Update verification
At least one comparison must be specified.
SelectLeft
columnThe first column for comparison. Must be comparable with SelectRight
. If this column contains null values, the result will be null for those rows.
SelectRight
columnThe second column for comparison. Must be comparable with SelectLeft
. If this column contains null values, the result will be null for those rows. Common pairs:
- current vs. previous values
- actual vs. expected results
- primary vs. backup data
Type conversion may occur for compatible types (e.g., int vs. float).
AsColumn
nameName for the new column. If not provided, the system generates a unique name. If AsColumn
matches an existing column, the existing column is replaced. The name should follow valid column naming conventions.