NotEqualToColumn / Boolean Layer
Create boolean mask columns by comparing values between two columns element-wise for inequality. Similar to pandas df['A'] != df['B'] or R's not equal operator. Returns True where corresponding values differ.
Common applications:
- Discrepancy detection
- Change monitoring
- Error identification
- Anomaly detection
- Update verification
Example:
| Index | Column A | Column B | Not Equal |
|---|---|---|---|
| 0 | apple | apple | false |
| 1 | 42 | 42 | false |
| 2 | null | apple | null |
| 3 | orange | ORANGE | true |
| 4 | 42.0 | 42 | false |
Compare
[, ...]List of column inequality comparisons to perform. Each creates a new boolean column. Common scenarios:
- Data change detection
- Inconsistency checking
- Error identification
- Update verification
At least one comparison must be specified.
SelectLeft
columnThe first column for comparison. Must be comparable with SelectRight. If this column contains null values, the result will be null for those rows.
SelectRight
columnThe second column for comparison. Must be comparable with SelectLeft. If this column contains null values, the result will be null for those rows. Common pairs:
- current vs. previous values
- actual vs. expected results
- primary vs. backup data
Type conversion may occur for compatible types (e.g., int vs. float).
AsColumn
nameName for the new column. If not provided, the system generates a unique name. If AsColumn matches an existing column, the existing column is replaced. The name should follow valid column naming conventions.