DataframeVar / Aggregation Layer
Calculate variance across specified columns, similar to numpy var() or pandas var(). Measures the average squared deviation from the mean.
Mathematical form: Where:
- is the variance
- is the mean
- is the number of observations
- ddof adjusts degrees of freedom
Common applications:
- Investment risk analysis
- Process control in manufacturing
- Experimental error estimation
- Quality assurance
- Sensor calibration
- Population studies
Provides multiple ddof configurations for detailed statistical analysis.
Table
0
0
Table
Select
[column, ...]Numeric columns to compute variance for. If empty, processes all numeric columns. Non-numeric columns are ignored. Selected columns should contain sufficient non-null values for meaningful variance calculation.
DdofValues
[, ...]Configuration for variance calculation with specific degrees of freedom adjustment. Different ddof values suit different statistical scenarios.
Ddof
u8Delta Degrees of Freedom (ddof) for variance calculation:
- 1 (default): Sample variance (unbiased estimator)
- 0: Population variance (maximum likelihood estimator) Higher values increase the estimated variance.