RollingSkew / Computation Layer

Calculate the rolling skewness (asymmetry measure) over a sliding window. Similar to pandas.rolling().skew() or R's roll_skew().

Mathematical form: where is mean and is standard deviation.

Common applications:

  • Financial returns analysis
  • Distribution asymmetry tracking
  • Risk assessment in markets
  • Quality control processes
  • Natural phenomena analysis
  • Portfolio optimization
  • Anomaly detection

Note: Positive skew indicates right tail; negative indicates left tail.

Table
0
0
Table

Select

column

The numeric column to compute rolling skewness for. Common inputs:

  • Financial returns (market sentiment)
  • Error distributions (process control)
  • Performance metrics (distribution shape)
  • Natural measurements (asymmetric patterns)
  • Reaction times (response distributions)

Number of observations in sliding window. Common periods:

  • 21: Monthly trading skewness
  • 60: Quarter-hour analysis for hourly data
  • 90: Quarterly analysis

Larger windows provide more reliable skewness estimates.

Bias

bool
false

Statistical bias correction flag. When false, applies correction factor:

  • true: Maximum likelihood estimate
  • false: Unbiased estimate (n/(n-1)(n-2))

Unbiased estimation recommended for smaller windows.

Name for the new column. If not provided, the system generates a unique name. If AsColumn matches an existing column, the existing column is replaced. The name should follow valid column naming conventions.