GreaterThan / Operator Layer
Compare if values in a column are greater than a constant or another column's values. Similar to pandas df['A'] > df['B'] or df['A'] > 5, numpy.greater(), or R's > operator. Returns a boolean column (true where left value exceeds right value).
Mathematical form:
Common applications:
- Threshold detection (temperature > limit)
- Performance monitoring (speed > requirement)
- Quality control (yield > minimum)
- Risk assessment (exposure > safe_level)
- Time series analysis (current > previous)
- Financial alerts (price > target)
Note: Comparison follows standard numeric ordering rules.
SelectLeft
columnThe primary column for comparison. Forms the left side of the greater-than check (e.g., measured value, current reading, test result).
SelectRight
oneofValue
i6464-bit signed integer threshold. Range: -2^63 to 2^63-1. Use cases:
- Age checks (age > 18)
- Count thresholds (errors > 5)
- Level monitoring (stock > reorder_point)
- Score filtering (points > passing_grade)
Value
u6464-bit unsigned integer threshold. Range: 0 to 2^64-1. Examples:
- Size limits (file_size > max_allowed)
- Usage monitoring (requests > quota)
- Capacity planning (demand > supply)
- Performance metrics (throughput > baseline)
Value
f6464-bit floating-point threshold. Common scenarios:
- Statistical significance (p_value > 0.05)
- Price points (cost > budget)
- Quality metrics (accuracy > 0.95)
- Environmental monitoring (ph > neutral)
PropagateNull
boolControls null value handling:
- true: propagates nulls (null > value returns null)
- false: treats nulls as false
Default is true for standard SQL-like null behavior
AsColumn
nameName for the new column. If not provided, the system generates a unique name. If AsColumn
matches an existing column, the existing column is replaced. The name should follow valid column naming conventions.