IsNanMask / Boolean Layer

Create boolean mask columns identifying NaN (Not a Number) values in numeric columns. Similar to numpy isnan() or R's is.nan(). Specifically targets floating-point NaN values, distinct from null/None values.

Common applications:

  • Numerical computation validation
  • Scientific data cleaning
  • Error detection in calculations
  • Float arithmetic validation
  • Infinite value handling

Example:

IndexFloat ColumnNaN Mask
01.5false
1NaNtrue
2-3.2false
3NaNtrue
4Inffalse
Table
0
0
Table

Mask

[, ...]

List of NaN checking operations to perform. Each mask creates a new boolean column. Common scenarios:

  • Checking results of mathematical operations
  • Validating scientific calculations
  • Identifying undefined floating-point results
  • Quality control in numerical analysis

At least one mask must be specified.

Select

column

The column to check for NaN values. Applicable to floating-point columns. The mask will be a boolean column where:

  • True indicates NaN value
  • False indicates any other value (including infinities)

Particularly useful for detecting undefined mathematical results or floating-point errors.

Name for the new column. If not provided, the system generates a unique name. If AsColumn matches an existing column, the existing column is replaced. The name should follow valid column naming conventions.