DataframeVar / Aggregation Layer

Calculate variance across specified columns, similar to numpy var() or pandas var(). Measures the average squared deviation from the mean.

Mathematical form: Where:

  • is the variance
  • is the mean
  • is the number of observations
  • ddof adjusts degrees of freedom

Common applications:

  • Investment risk analysis
  • Process control in manufacturing
  • Experimental error estimation
  • Quality assurance
  • Sensor calibration
  • Population studies

Provides multiple ddof configurations for detailed statistical analysis.

Table
0
0
Table

Select

[column, ...]

Numeric columns to compute variance for. If empty, processes all numeric columns. Non-numeric columns are ignored. Selected columns should contain sufficient non-null values for meaningful variance calculation.

DdofValues

[, ...]

Configuration for variance calculation with specific degrees of freedom adjustment. Different ddof values suit different statistical scenarios.

1

Delta Degrees of Freedom (ddof) for variance calculation:

  • 1 (default): Sample variance (unbiased estimator)
  • 0: Population variance (maximum likelihood estimator) Higher values increase the estimated variance.