DataframeSkew / Aggregation Layer

Calculate skewness across specified columns, similar to scipy.stats.skew or pandas skew(). Measures the asymmetry of data distribution around its mean.

Mathematical form: Where:

  • is the mean
  • is the standard deviation
  • is the number of observations

Interpretation:

  • Positive skew: Long right tail (mean > median)
  • Negative skew: Long left tail (mean < median)
  • Zero skew: Symmetric distribution

Common applications:

  • Financial return analysis
  • Process control monitoring
  • Medical outcome distributions
  • Environmental data analysis
  • Population demographics
  • Response time studies

Provides multiple configuration options for detailed distribution analysis.

Table
0
0
Table

Select

[column, ...]

Numeric columns to compute skewness for. If empty, processes all numeric columns. Non-numeric columns are ignored. Selected columns should contain sufficient non-null values for meaningful skewness calculation.

Skewness

[, ...]

Configuration for skewness calculation, allowing control over bias correction in the statistical estimation.

Bias

bool
true

Controls bias correction in calculation:

  • true (default): Use biased moment estimators
  • false: Apply bias correction for small samples

Bias correction affects accuracy in small samples but increases variance.